## Proving Statements about Segments

Goals · Justify statements about congruent segments.

· Write reasons for steps in a proof.

### **VOCABULARY**

Theorem a Statement that can be proven

Two-column proof has numbered statements and corresponding reasons that show an argument in logical order

### **THEOREM 2.1 PROPERTIES OF SEGMENT CONGRUENCE**

**Reflexive** For any segment AB, AB = AB.

Symmetric If  $\overline{AB} \cong \overline{CD}$ , then  $\overline{CD} \cong \overline{AB}$ .

Transitive If  $\overline{AB} \cong \overline{CD}$ , and  $\overline{CD} \cong \overline{EF}$ , then  $\overline{AB} \cong \overline{EF}$ .

### Example 1 Transitive Property of Segment Congruence

You can prove the Transitive Property of Segment Congruence as follows.

Given:  $\overline{JK} \cong \overline{MN}, \overline{MN} \cong \overline{PQ}$ 

Prove:  $\overline{JK} \cong \overline{PQ}$ 

# X M P

### **Statements**

- **1.**  $\overline{JK} \cong \overline{MN}$ ,  $\overline{MN} \cong \overline{PO}$
- 2. JK = MN, MN = PQ
- 3. JK=PQ
- 4.  $\overline{JK} \cong \overline{PO}$

- 1. Given
- 2. Def of congruent Segments
- 3. Transitive property of equality
- 4. Definition of congruent segments

### Example 2

### Using Congruence

Use the diagram and the given information to complete the proof.

Given:  $\overline{PQ}\cong \overline{RS}$ ,  $\overline{PQ}\cong \overline{QR}$ ,  $\overline{PS}\cong \overline{RS}$ 

Prove:  $\overline{PS} \cong \overline{QR}$ 



### **Statements**

1. 
$$\overline{PQ} \cong \overline{RS}$$

2. 
$$\overline{PQ} \cong \overline{QR}$$

3. 
$$\overline{RS} \cong \overline{QR}$$

**5.** 
$$\overline{PS} \cong \overline{QR}$$

### Reasons

- 1. Given
- 2. <u>Given</u>
- 3. Transitive Property of Congruence
- 4. Given
- 5. Transitive Property of Congruence

### Example 3

### **Using Segment Relationships**

In the diagram, AC = CE and AB = DE. Show that C is the midpoint of  $\overline{BD}$ .



Given: AC = CE, AB = DE

Prove: ( 15 midpoint of BD



### Statements

$$1 AC = CE$$

$$\mathbf{2.}AB + BC = AC$$

$$4. CD + DE = CE$$

$$6.AB = DE$$

$$7. AB + BC = CD + AB$$

9. 
$$\overrightarrow{BC} \cong \overrightarrow{CD}$$

**10.** 
$$C$$
 is the midpoint of  $\overline{BD}$ .

- 1. GIVEN
- 2. <u>Segment Add Post</u>
- 3. Transitive Property of Equality
- 4. <u>Segment Add Post</u>
- 5. Transitive Property of Equality
- 6. GIVEN
- 7. Substitution prop of equality
- 8. Subtraction Property of Equality
- 9. Definition of congruent segments
- 10. Def. of midpoint



**1.** In the diagram, AB = DE and BC = CD. Complete the proof to show that C is the midpoint of  $\overline{AE}$ .



Prove: CISMIDDONADA AF

### **Statements**

1. 
$$AB = DE$$

$$4. \frac{AB + BC}{} = DE + CD$$

$$5.AB + BC = AC$$

**10.** C is the midpoint of  $\overline{AE}$ .

- 1. <u>Given</u>
- 2. Add POE
- 3. Given
- 4. Toubs
- 5. See Add Post
- 6. Transitive Property of Equality
- 7. Segment Addition Postulate
- 8. Transitive Property of Equality
- 9. Definition of congruent segments
- 10. Def of midpoint

### **Proving Statements about Angles**

- Goals Use angle congruence properties.
  - · Prove properties about special pairs of angles.

### THEOREM 2.2 PROPERTIES OF ANGLE CONGRUENCE

Angle congruence is reflexive, symmetric, and transitive.

Reflexive For any angle A,  $\angle A \cong \angle B$ . Symmetric If  $\angle A \cong \angle B$ , then  $\angle B \cong \angle B$ 

Transitive If  $\angle A \cong \angle B$  and  $\angle B \cong \angle C$ , then  $\angle A \cong \angle C$ 

Example 1

Using the Transitive Property

In the diagram at the right,  $\angle 1 \cong \angle 5$ ,  $\angle$ 5  $\cong$   $\angle$ 3, and  $m\angle$ 1 = 103°. What is the measure of  $\angle$ 3? Explain your reasoning.



### Solution

| Statement . | reason                  |
|-------------|-------------------------|
| 1. <1≅<5    | 1. QIV CM               |
| 2. <5≅<3    | 2. OIVED                |
| 3. 4(= 43   | 3. Transitive property  |
| 4. m<1=m<3  | 4. DEF OF CONGruent 4'S |
| 5. M41=1D3° | 5. given                |
| 6. m<3=103° | 6. Nansitive            |

### THEOREM 2.3 RIGHT ANGLE CONGRUENCE THEOREM

All right angles are conquent

### THEOREM 2.4 CONGRUENT SUPPLEMENTS THEOREM

If two angles are supplementary to the same angle (or to congruent angles), then they are Company

If 
$$m\angle 1 + m\angle 2 = \underline{180^{\circ}}$$
 and  $m\angle 2 + m\angle 3 = \underline{180^{\circ}}$ , then  $\underline{\angle 1 \cong \angle 3}$ 



### THEOREM 2.5 CONGRUENT COMPLEMENTS THEOREM

If two angles are complementary to the same angle (or to congruent angles), then the two angles are Congruent

If 
$$m\angle 4 + m\angle 5 = 90^{\circ}$$
 and  $m\angle 5 + m\angle 6 = 90^{\circ}$ , then  $\angle H = \angle 6$ 



### Example 2 Proving Theorem 2.5

Given:  $\angle 1$  and  $\angle 2$  are complements,  $\angle 3$  and  $\angle 4$  are complements,

 $\angle 2 \cong \angle 4$  Prove:  $\angle 1 \cong \angle 3$ 



### Statements

- 1.  $\angle 1$  and  $\angle 2$  are complements,  $\angle 3$  and  $\angle 4$  are complements,  $\angle 2 \cong \angle 4$
- 2.  $m\angle 1 + m\angle 2 = 90^{\circ}$ ,  $m\angle 3 + m\angle 4 = 90^{\circ}$
- 3. <u>mll+mld=</u> ml3+ml4
- $4.m\angle 2 \neq m\angle 4$
- $5. \underline{M2} + \underline{M22} = \underline{M23 + \underline{M22}}$
- 6. <u>m</u>41=m23
- **7.** ∠**1** ≅ ∠3

- 1. given
- 2. Def of comp 4's
- 3. Transitive property of equality
- 4. Def of congreni X'S
- 5. Substitution property of equality
- 6. Subtraction property of equality
- 7. Def of conquent 4's

### POSTULATE 12 LINEAR PAIR POSTULATE

If two angles form a linear pair, then they are Supplementany  $m\angle 1 + m\angle 2 = 120^{\circ}$ 



### THEOREM 2.6 VERTICAL ANGLES THEOREM

Vertical angles are CONGYUCAT

 $\angle 1 \cong \underline{\angle 3}$  and  $\angle 2 \cong \angle 4$ 



### Using Linear Pairs and Vertical Angles Example 3

In the diagram,  $\angle 3$  is a right angle and  $m\angle 5 = 57^{\circ}$ . Find the measures of  $\angle 1$ ,  $\angle 2$ ,  $\angle 3$ ,

and ∠4. u



### Solution

By the definition of a right angle,  $m \angle 3 = 9$ .

 $\angle 2$  and  $\angle 5$  are  $\underbrace{\text{RFT}(Q)}_{QM}\underbrace{\text{OM}}_{C}$  and  $m\angle 5 = 57^{\circ}$ , so  $m\angle 2 = 57^{\circ}$ .

 $\angle 1$  and  $\angle 5$  form a  $\underline{| \ new \ pcuv}$ , so  $\underline{m}\angle 1 + \underline{m}\angle 5 = \underline{| \ begin{center} below \ color \ m \ della \ d$ 

 $\angle 4$  and  $\angle 5$  are  $\bigcirc (M) \bigcirc (M) \bigcirc (M)$  so  $m\angle 4 + m\angle 5 = \bigcirc (M) \bigcirc (M)$ . When you substitute  $\bigcirc (M) \bigcirc (M)$  and solve for  $m\angle 4$ , the result is